@@ -18,7 +18,7 @@ The challenging goal of detecting gravitational waves opened a research field de
...
@@ -18,7 +18,7 @@ The challenging goal of detecting gravitational waves opened a research field de
This research is important, because detecting gravitational waves means looking at the sources which produced them. There is still a gap in the knowledge of many astrophysical objects, such as Black Holes (BH), Neutron Stars (NS), Supernova events: this new-born branch of astrophysics will help to fill the gap and increase our knowledge of the Universe.\\
This research is important, because detecting gravitational waves means looking at the sources which produced them. There is still a gap in the knowledge of many astrophysical objects, such as Black Holes (BH), Neutron Stars (NS), Supernova events: this new-born branch of astrophysics will help to fill the gap and increase our knowledge of the Universe.\\
\noindent
\noindent
The detectors currently in use are sensitive to events from sources emitting at frequencies above $\sim$ 10 Hz, but there is still a broad range of frequencies to which the detectors are blind. Looking at different frequencies of emission means looking at different objects emitting gravitational waves. This would broaden the catalogue of observed objects and the changes to better understand their nature.\\
The detectors currently in use are sensitive to events from sources emitting at frequencies above $\sim$ 10 Hz, but there is still a broad range of frequencies to which the detectors are blind. Looking at different frequencies of emission means looking at different objects emitting gravitational waves. This would broaden the catalogue of observed objects and the chances to better understand their nature.\\
\noindent
\noindent
The work carried on during my PhD studies and exposed in this thesis has been dedicated to the improvement of the sensitivity of the detectors at frequencies below 10 Hz, by the development of new ideas and technologies to reduce noise sources affecting the low-frequency bandwidth, in particular the seismic motion.
The work carried on during my PhD studies and exposed in this thesis has been dedicated to the improvement of the sensitivity of the detectors at frequencies below 10 Hz, by the development of new ideas and technologies to reduce noise sources affecting the low-frequency bandwidth, in particular the seismic motion.